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GAMMA DISCOUNTING AND

EXPECTED NET FUTURE VALUE

Abstract

Recent research suggests that the long term future should be discounted

with a declining discount rate. One such line of research, exemplified

by Weitzman [11], shows that the certainty equivalent discount rate is

declining when future capital productivity is uncertain. However, in a

recent paper Gollier [4] puts forward a puzzle that casts doubt on the

validity of this conclusion. He asserts that using expected net future

value, rather than conventional expected net present value, implies that

the certainty equivalent discount rate increases over time. This paper

resolves the apparent puzzle by encompassing the models of Gollier [4]

and Weitzman [11]. In fact, Gollier [4] proves that as the evaluation date

moves further into the future, the discount rate at a given point in time

will increase. However, given a particular evaluation date, the schedule

of discount rates is declining.

JEL Classification Numbers : D61, D99, E43.

Keywords : declining discount rates, uncertainty, intertemporal risk allo-

cation
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1 Introduction

One of the most powerful arguments for declining social discount rates is that un-

certainty (and persistence) in the discount rate implies that the certainty-equivalent

discount rate is declining. Weitzman [10, 11] provides an extremely simple account of

the argument. Newell and Pizer [8] and Groom et al. [6] develop more sophisticated

econometric analyses which, nevertheless, have the same conceptual underpinning.

The case for declining discount rates based upon uncertainty has recently been ac-

cepted by the UK Government and is now incorporated into the official advice in

HM Treasury [7].

In a recent paper, however, Gollier [4] puts forward a puzzle which casts doubt on

the validity of the case based upon uncertainty. The puzzle, which is explained more

fully in section 2, is based on a simple thought experiment. Compare the following

two alternatives: (1) invest £1 in a project with a certain 3% annual rate of return,

yielding a certain payoff of £400 in 200 years; and (2) invest £1 on capital markets

that are equally likely to return 0% or 5%, yielding a payoff of either £1 or £22, 000

in 200 years.

Faced with this choice, it might seem obvious that a risk neutral investor would

prefer the investment on the capital markets, with an expected payoff of £11, 000.

Indeed, this is optimal according to the expected net future value (ENFV) criterion,

which compares costs and benefits in their equivalent future values in 200 years.

However, using the conventional expected net present value (ENPV) — where costs

and benefits are discounted back to their present values — the result is reversed and

the certain project is preferred. With the capital markets as numeraire, the ENPV
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of investing on the markets is zero, while the ENPV of investing in the safe project

is approximately £200.1 The two criteria give opposite results for this uncertain

investment decision. In contrast, ENFV and ENPV give identical results under

perfect certainty — uncertainty appears to force them to part company.

Following on from this thought experiment, Gollier [4] appears to demonstrate that

under the expected net future value criterion, the certainty-equivalent discount rate

is increasing with time. This is obviously incompatible with the broad conclusion

in the literature. Referring to the results presented by Weitzman [10, 11], Gollier

states that ‘we cannot both be right. In fact, to tell the truth, I believe that we are

both wrong’.

This paper shows that the ‘puzzle’ put forward by Gollier has a straightforward res-

olution and that, in essence, Weitzman and Gollier can both be right. We demon-

strate that the model in Gollier [4] does not prove that the discount rate increases

with the passage of time. On the contrary, the socially efficient discount rate declines

à la Weitzman [10, 11] irrespective of the criteria employed in CBA. However, we

demonstrate that there is a sense in which Gollier is correct in saying that the dis-

count rate is increasing with time. As the evaluation date, that is the numeraire date

employed for assessing the investment, moves further into the future, the discount

rate at a particular point in time increases. In this sense, Gollier and Weitzman are

both right.

The paper proceeds as follows. In section 2 we describe the puzzle proposed by

1The ENPV of investing on the markets is −£1+0.5(£1·e−0%×200)+0.5(£22, 000·e−5%×200) =

£0. In contrast, the ENPV of the certain project is −£1 + 0.5(£400 · e−0%×200) + 0.5(£400 ·

e−5%×200) ≈ £200.
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Gollier [4] and present his argument that the certainty-equivalent discount rate

increases under ENFV. In section 3 we discuss his explanation for the puzzle —

the two decision criteria imply different intertemporal allocation of risk. We show,

however, that this explanation is incorrect. In section 4, we show that the puzzle

arises from confusion about the role of the evaluation date, and we present our

solution in section 5. In section 6, we move beyond this debate and note that under

uncertainty, whether or not a project is efficient depends upon the evaluation date.

We develop some simple ‘intergenerational efficiency rules’ to determine how far

into the future a given project would pass retrospective cost benefit analysis. We

conclude in section 7.

2 The puzzle

The puzzle described by Gollier [4] is based upon an investment of one unit of

consumption at t = 0 which yields a certain payoff of Z units at time t = T . The

(social) opportunity cost of this investment is given by the random variable r̃ drawn

from [r, r̄] with cumulative distribution function G(r̃).2 In general, we define a

2This formulation, employed by Gollier [4] and Weitzman [10, 11], is a rather unusual and

unrealistic specification of uncertainty. It implicitly assumes an extremely high degree of persistence

in the discount rate. (That is, once the uncertainty is resolved, the discount rate remains constant

from then on.) This is an approximation to more realistic econometric models such as those of

Newell and Pizer [8] and Groom et al. [6]. As these authors find US and UK discount rates to

show moderate persistence, the approximation — while unrealistic — is not inappropriate for our

purposes.
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Gollier project to have a flow of net benefits given by:

B(t) = −δ(0) + Zδ(T ) (1)

where δ(t) represents the Dirac delta function, which has unit area at t and is zero

elsewhere.

2.1 Expected net present value

The ENPV of an investment is found by converting all cash flows into common

units at t = 0. Net benefits B(t) accruing at time t are multiplied by the certainty-

equivalent discount function Dc(t) = Ee−r̃t and summed to yield:

ENPV =

∫ T

0

B(t)Ee−r̃tdt =

∫ r̄

r

∫ T

0

B(t)e−r̃tdt dG(r̃) (2)

Substituting the net benefit function from equation (1) to equation (2) reveals that

the expected net present value of a Gollier project is:

ENPV = ZEe−r̃T − 1 (3)

The certainty-equivalent average3 discount rate, rca(t) is the discount rate which,

when applied over [0, t], yields the certainty-equivalent discount function: e−rcat =

Dc(t) = Ee−r̃t. In other words, the certainty-equivalent average discount rate is

defined by:

rca(t) = −1

t
ln Ee−r̃t (4)

It is straightforward to prove that rca(t) is a declining function of time t.4

3Note that the certainty-equivalent average discount rate is not generally equal to the certainty-

equivalent marginal discount rate, except in the case when these discount rates are constant.
4For instance, see the more general proposition 6 in the Appendix and set s = τ = 0.
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2.2 Expected net future value

The ENFV of an investment is found by converting all cash flows into common units

at a future point in time, generally the project end date, t = T . To do this, net

benefits accruing at time t are multiplied by certainty-equivalent discount function

Dc(t, T ) = Ee−r̃(t−T ) and summed to yield:

ENFV =

∫ T

0

B(t)Ee−r̃(t−T )dt =

∫ r̄

r

∫ T

0

B(t)e−r̃(t−T )dt dG(r̃) (5)

Substituting the net benefit function from equation (1) to equation (5) shows that

the ENFV of a Gollier project is:

ENFV = Z − Eer̃T (6)

Rewriting this for convenience, we see that ENFV will be positive (and the invest-

ment worthwhile) provided that Z
(
Eer̃T

)−1−1 > 0. Gollier compares this equation

with equation (3) and notes that the corresponding certainty-equivalent return un-

der ENFV is given by the equation eR(t) = Eer̃t, from which he infers that the

certainty-equivalent discount rate is:

R(t) =
1

t
ln

(
Eer̃t

)
(7)

It is straightforward to show that R(t) is increasing over time.5 A puzzle therefore

appears to arise. Under ENPV, the certainty-equivalent schedule of discount rates

is declining, yet under ENFV, the certainty-equivalent schedule of discount rates

appears to be increasing. Gollier [4] proposes a solution to the puzzle which we now

consider.

5See proposition 2 by Gollier [4]. Proposition 7 in the Appendix proves a corresponding result

in a more general setting.
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3 Gollier’s explanation: risk allocation

Gollier [4] argues that the puzzle is solved by recognising that ENFV and ENPV

imply different (and arbitrary) intertemporal allocations of risk:

Taking the expected net future value is equivalent to assuming that all risks

will be borne by the future generation...Using the expected net present value

implicitly means it is the current generation who bears the risk...Because the

two approaches lead to radically different recommendations, we see that, to

solve the problem, we cannot escape the discussion of who should bear which

risk.

In other words, Gollier [4] asserts that an explicit treatment of optimal intertemporal

risk allocation, such as developed by Gollier [2, 3, 5], is necessary before any sensible

conclusions can be drawn. However, it seems odd that different risk allocations

could alter the optimal decision of a risk-neutral investor. Indeed, the statement

that ENFV allocates risk to future generations is incorrect. ENFV and ENPV are

merely decision criteria. Both criteria can be applied in situations where the risk is

borne by either present or future generations.

To see this, consider the following two thought experiments. The first thought

experiment was discussed above — an investor chooses between investing £1 for T

years in either: (1) a safe deposit with a certain return r, yielding a certain payoff of

erT ; or (2) the market, with a stochastic return of r̃, with expected payoff of Eer̃T .

Recall that a risk-neutral investor applying the ENPV criterion would invest in the

deposit. The same risk-neutral investor applying the ENFV criterion would choose

to invest on the market. The risk here is borne by the future generation.
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In contrast, now consider a second situation where the risk is borne by the present

generation. Suppose you need a certain payoff of Z = erT at time T, and can choose

between two options to achieve this: (1) invest £1 in a safe deposit, yielding the

certain payoff of Z = erT ; or (2) purchase a bond on market which pays £Z for

certain on maturity in T years. The current price of the bond depends upon the

market interest rate, r̃, and we suppose the bond is purchased before this interest

rate is known. The expected bond price is EZe−r̃T . With the same numbers as

above, the bond price is equally likely to be £400 or £0.02, depending upon the

prevailing interest rate, with an expected price of £200. As before, a risk-neutral

investor applying the ENPV criterion would invest in the safe deposit. And, as

before, the same risk-neutral investor using ENFV would (weakly) prefer to invest

on the market and buy the bond.

[Insert Table I about here.]

These two thought experiments, summarised in table I, are analogues of one another.

The first one imposed risk upon the future generation, the second one imposed risk

upon the present generation. Both were able to be evaluated with the ENPV and

ENFV criteria. The risk allocation did not change the result — the choice of criterion

was the critical factor. ENPV favours more secure investments while ENFV favours

higher risk investments, no matter which generation bears the risk. The puzzle is

not solved by attributing the difference between the ENPV and ENFV criteria to

differential intertemporal risk allocation. As we shall see, considering the expected

net value at a general evaluation time τ provides some more insight.
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Figure 1: A Gollier project in [0, T] can be evaluated at any date τ .

4 An alternative explanation: evaluation date

Up until this point, we have considered either ENPV (evaluation time τ = 0), or

ENFV (evaluation time τ = T ). It is helpful to generalise this analysis and to

consider cost benefit analysis at a general evaluation time τ . Let us examine a

project, such as a Gollier project in figure 1, occurring over a given interval in real

time, [0, T ]. The entire project (not only the remaining portion) can be evaluated

from the perspective of any date, τ , prospectively (e.g. at τ1), concurrently (e.g.

at τ2) or retrospectively (e.g. at τ3).
6 In a retrospective evaluation, (τ ≥ T ), the

planner evaluates the project based on the information available ex ante — as if

the uncertainty in the discount rate has not yet been resolved. This is equivalent

to asking: ‘what would a future generation want us to do, given the information

6Note that moving the evaluation date forwards in time is equivalent to moving the stream of

net benefits backwards in time. This is reflected in the fact that equation (8) depends only upon

(t− τ).
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available to us now.’ Denote the expected net value at evaluation date τ to be

ENV(τ). Then, analogously to the definition for ENPV in equation (2), we have:

ENV(τ) = E

∫ T

0

B(t)e−r̃(t−τ)dt (8)

For a project evaluated at time τ , the certainty-equivalent discount function is given

by:

Dc(t, τ) = e−rca(t,τ)(t−τ) = Ee−r̃(t−τ) (9)

This discount function is normalised so that consumption at the evaluation date,

t = τ , has a weight of unity.7 Given the discount function in equation (9), the

corresponding certainty-equivalent average discount rate is given by:

rca(t, τ) = − 1

t− τ
ln Ee−r̃(t−τ) (10)

Proposition 1. The certainty-equivalent average discount rate, rca(t, τ),

declines with the passage of time to limt→∞ rca = r, but it is increasing in the

evaluation date, τ .

Proof. Showing ∂rca(t, τ)/∂t ≤ 0 is straightforward, as noted above. Proof that

∂rca(t, τ)/∂τ ≥ 0 follows from the fact that ∂rca/∂t = −∂rca/∂τ .

Proposition 1 suggests a solution to the puzzle. Although the certainty-equivalent

discount rate is declining with t, it is increasing in τ , the evaluation time. It turns out

that the puzzle arises from confusing these two time variables. Reconsider Gollier’s

ENFV certainty-equivalent average discount rate in equation (7). According to

the generalised expression in equation (10), if the evaluation time is τ = T , cash

7Other normalisations are valid, of course, but the results that follow do not depend upon the

particular normalisation used, as we prove in propositions 6 and 7 in the Appendix. We are grateful

to Christian Gollier for alerting us to this point.
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flows accruing at t must be multiplied by the discount function e−r̃(t−T ), and the

certainty-equivalent average discount rate is given by:

rca(t, T ) = − 1

t− T
ln Ee−r̃(t−T ) (11)

Now equations (7) and (11) should be identical, but inspection shows that Gollier’s

specification of R(t) under ENFV is incomplete. Now note that at t = 0, the

certainty-equivalent average discount rate in equation (11) is given by:

rca(0, T ) =
1

T
ln

(
Eer̃T

)
(12)

which is almost identical to equation (7). The only difference is that the evaluation

date, τ = T , in equation (12), has been replaced by the passage of time, t, in

equation (7).

So although Gollier correctly proved that the certainty equivalent discount rate is

increasing in one time variable, this variable is the evaluation date, τ , rather than

the passage of time, t. The certainty equivalent discount rate is declining with the

passage of time, as per Weitzman [10]. In this sense, both Weitzman and Gollier

are right. Figure 2 provides a simple illustration, assuming that the discount rate is

drawn from a gamma distribution8 with mean 4% and standard deviation 1%. For

a given evaluation date τ , the certainty-equivalent average discount rate declines

as time t increases. However, it is shifted up when the evaluation date τ is moved

further into the future.9

8The density function of the gamma distribution is given by: g(r) = βα

Γ(α)r
α−1e−βr with corre-

sponding mean µ = α/β and variance σ2 = α/β2.
9Equivalently, the discount rate at a particular time horizon, T , declines as the time horizon T

increases, but is shifted up when the evaluation date τ increases.
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Figure 2: Certainty-equivalent average discount rates for three evaluation dates.

5 Solving the puzzle

The foregoing analysis resolves the confusion between the passage of time and the

evaluation date, but does not completely solve the puzzle that, under uncertainty, a

project that passes a cost benefit analysis using the ENPV criterion may fail using

the ENFV criterion. As ENPV and ENFV represent evaluations at different dates,

the final piece of the puzzle is to explain why, under uncertainty, a project can be

judged efficient at one evaluation date, and inefficient at another.

A good starting point is Strotz [9], who recognised that declining utility discount

rates can generate time-inconsistent planning — where the optimum path as deter-

mined at one point in time is different to that determined at a later date, for no

reason other than the passage of time. Strotz [9] asked:

If [an agent] is free to reconsider his plan at later dates, will he abide by

it or disobey it—even though his original expectations of future desires

and means of consumption are verified?’

Although the underlying phenomenon here is different — we have declining con-
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sumption, not utility, discount rates — the result is the same.10 Because the dis-

count rate is uncertain, the certainty-equivalent discount rate is declining through

time, and the discount rate applied at a particular point in time depends upon the

evaluation date. The result is that a project that passes a cost benefit analysis from

the viewpoint of a planner at time τ1 may fail the test when examined by a planner

at time τ2.
11 Viewed through this lens, the puzzle posed by Gollier [4] is not really

a puzzle at all — under uncertainty, ENPV and the ENFV criteria can recommend

different courses of action because certainty-equivalent discount rates are declining.

And yet, for a policymaker, the foregoing analysis raises more questions than it

answers. If a project designed for the benefit of future generations passes a cost

benefit analysis now, but would fail the same test using a later evaluation date,

should we invest in it? Or, more generally, how should we make decisions when

there is a conflict between analyses using different evaluation dates? Whose date

10If the underlying utility discount rate is constant, a varying consumption discount will not

produce time-inconsistent planning, as Dasgupta et al. [1] note. Neither Weitzman [11] nor Gollier

[4] analyse an optimal growth model, so there is no explicit utility discount rate here.
11There are two reasons to refrain from describing this intertemporal conflict as ‘time inconsis-

tency’. First, time inconsistency normally involves a planner at a future date finding it optimal to

deviate from an earlier plan. Although this is possible here (e.g. planners at τ1 < 0 and τ2 = 0

might disagree about the optimal action at t = 0), we are more interested in the case where a future

planner (at τ3 > T ) retrospectively disapproves of the action taken at t = 0 by the planner at τ = 0.

Second, Newell and Pizer [8] note that when the discount rate decline is generated by ‘dynamic

uncertainty about future events’, good decisions ex ante may be regrettable once information is

revealed ex post. Here, the ex ante evaluation assumes that the discount rate uncertainty will be

resolved once and for all ex post (see footnote 2). However, the ex post evaluation is conducted

based on the same (unresolved) discount rate uncertainty. This amounts to revealing that the

discount rate uncertainty has not been resolved as anticipated ex ante.
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should be employed? These questions are difficult, and we do not pretend to have

answers for them. Nonetheless, this next section proposes some guidance on the

degree of conflict between the vantage points of different generations.

6 Project efficiency and the evaluation date

To place some formal structure on these questions, we define the internal rate of

return of a project as the constant, certain discount rate that yields a net value

NV (τ, r) equal to zero for that project. The internal rate of return of a project

does not change with the evaluation date. Formally,

Definition 1. The internal rate of return of a project is r∗ = {r : NV (τ, r) =

0}. For a Gollier project, r∗ = 1
T

ln Z.

As the efficiency of a project is assessed differently from different evaluation dates,

the following definition is useful.

Definition 2. A project is τ -efficient if passes a cost benefit analysis at evalua-

tion date τ .

Employing these definitions, we can prove the following.

Proposition 2. For the set of projects with Er̃ > 0 and cov(r̃, NV (τ, r̃)) < 0, if

a project is τ ′-efficient, then it is also τ -efficient for all τ ≤ τ ′.

Proof. Differentiating equation (8) with respect to the evaluation date, we see
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that:

dENV(τ)

dτ
= Er̃

∫ T

0

B(t)e−r̃(t−τ)dt (13)

= E [r̃.NV (τ, r̃)] (14)

= Er̃.ENV(τ, r̃) + cov(r̃, NV (τ, r̃)) (15)

By assumption Er̃ > 0 and cov(r̃, NV (τ, r̃)) < 0 so from equation (15) it follows that

ENV(τ, r̃) ≤ 0 ⇒ dENV(τ)/dτ < 0. As such, if ENV(τ ′, r̃) ≤ 0, then ENV(τ, r̃) < 0

for all τ > τ ′. In other words, if ENV is non-positive at a given evaluation date,

it must be negative for all later evaluation dates. It follows directly from this that

if ENV is positive at a given date, it cannot have been negative at an earlier date.

That is, if ENV(τ ′, r̃) > 0, then ENV(τ, r̃) > 0 for all τ ≤ τ ′, and thus the project

is τ -efficient for all τ ≤ τ ′.

The assumption that Er̃ > 0 amounts to requiring that the expected opportunity

cost of the investment is positive. This is likely to be true. Note that the support

of r̃ is unrestricted — proposition 2 holds even if the support of r̃ includes negative

values, provided Er̃ > 0. The assumption that cov(r̃, NV (τ, r̃)) < 0 requires that a

higher discount rate produce a lower net value of the investment. Many investments

satisfy this requirement because an ‘investment’, by definition, involves costs now in

return for benefits in the future.12 However, some investments also have costs which

accrue after a long stream of benefits, such as nuclear power plants. The net value

of such projects may increase in r over some range and hence cov (r̃, NV (τ, r̃)) may

be positive.13

12Note that cov(r̃, NV (τ, r̃)) is a function of τ , and for some investments cov(r̃, NV (τ, r̃)) > 0

for τ > T .
13In these cases, the internal rate of return may not be unique. Despite this possibility, propo-
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Proposition 2 implies that if a (risk-neutral) future generation finds a safe investment

to be efficient relative to the risky market alternative, then the (risk-neutral) present

generation will also judge the safe investment efficient. The converse, however, is

not true: even if the present generation finds the safe investment to be efficient, the

future generations may judge the risky investment to be efficient. Indeed, this case

describes the original thought experiment, in table I, where a certain investment was

preferred under the ENPV criterion and the risky market investment was preferred

under the ENFV criterion.

What is the reason for this result? Mathematically, it is because the discount rate

at any given time, t, is lower the earlier the evaluation date τ . As such, for most

investments, where the costs accrue before the benefits, a lower discount rate implies

a higher ENV. As such, the earlier the evaluation date, the more attractive the

investment.

We have seen that if a project is efficient at a future evaluation date, it is also

efficient today. It is convenient, therefore, to define the critical evaluation date τ̄

as the evaluation date before which the project is assessed to be efficient, and after

which it is assessed to be inefficient. By proposition 2, a project is efficient for all

evaluation dates τ < τ̄ where τ̄ = {τ : ENV(τ) = 0}.

We can now proceed to investigate the circumstances in which different generations

would approve, or disapprove, of investment in a project. In particular, we aim to

determine when a project will be judged to be: (1) unanimously efficient, meaning

sition 2 holds for a larger set of projects than those with a unique internal rate of return and

NV (τ, r) monotonically decreasing in r. This is because cov (r,NV (τ, r)) may be negative even if

NV (τ, r) is increasing in r over a subset of the domain.
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that the project is considered to be efficient no matter what the evaluation dates (τ̄

is unbounded); (2) time horizon efficient, meaning efficient for evaluation dates up

to receipt of the payoff at time T , (τ̄ > T ); (3) currently efficient, meaning efficient

at the current date, (τ̄ > 0); and (4) never efficient at any evaluation date, including

dates in the past, (τ̄ → −∞).

With a certain discount rate, definition 1 implies that the ENV(τ) of any flow of

net benefits B(t) is isomorphic to a flow of benefits given by:

B(t) = −δ(0) + er∗T δ(T ) (16)

where δ is the Dirac delta function and r∗ is the internal rate of return. While this

does not hold under uncertainty, we can nevertheless gain some useful insight by

studying the set of Gollier projects, where the payoff Z = er∗T . For such a Gollier

project, equation (8) becomes:

ENV(τ) = E
[
er̃τ

(
e(r∗−r̃)T − 1

)]
(17)

Proposition 3. (Intergenerational efficiency rules)

A Gollier project with internal rate of return r∗ is said to be:



unanimously efficient

time horizon efficient

currently efficient

never efficient

for





r∗ > r̄

r∗ > rca(0, T )

r∗ > rca(T, 0)

r∗ < r

Proof. If r∗ > r̄ then e(r∗−r̃)T > 1 and as Eer̃τ > 0 it follows from equation (17)

that ENV(τ) > 0 for all τ and the project is unanimously efficient. At the other

extreme, if r∗ < r, then e(r∗−r̃)T < 1 and ENV(τ) < 0 for all τ and the project is

never efficient.
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For the other two cases, a Gollier project is τ -efficient if Z > Z̄, where Z̄ is the

payoff that implies ENV(τ) = 0. From equation (17), that is:

Z̄(τ) =
Eer̃τ

Ee−r̃(T−τ)
(18)

For the project to be time horizon efficient — that is, to be T -efficient — equation

(18) implies that the payoff Z must exceed Z̄(T ) = Eer̃T . The internal rate of return

for a marginal T -efficient project is given by 1/T ln Z̄ = 1/T ln Eer̃T = rca(0, T ).

Thus any project with an internal rate of return r∗ > rca(0, T ) is time horizon

efficient.

For a project to be currently efficient requires Z > Z̄(0) = 1/Ee−r̃T . The internal

rate of return for the marginal project is −1/T ln Ee−r̃T = rca(T, 0). Thus a project

with internal rate of return r∗ ≥ rca(T, 0) is currently efficient.

In other words, if the internal rate of return of the project exceeds the upper bound

of the support for the discount rate, we observe a unanimous judgement of efficiency

from all generations. This is entirely intuitive — if the certain project has a payoff

exceeding the best possible outcome on the markets, all generations will support the

investment. The other extreme case is similarly intuitive: no generation will judge

a project to be efficient which has an internal rate of return below the lower bound

of the support of the discount rate.

The intergenerational efficiency rules in proposition 3 represent a first step towards

dealing with the intergenerational conflict arising from declining discount rates.

Clearly, policymakers can invest with confidence in a project that is unanimously

efficient, and they would probably be comfortable investing in projects that are

time-horizon efficient. For short-term projects, the simple requirement of current
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efficiency might be enough. With the recent policy focus on ensuring ‘sustainability’,

however, perhaps this sets the bar too low, but ultimately, this is for governments

to decide.

7 Conclusion

This paper solves an intriguing puzzle, discovered by Gollier [4], that certainty-

equivalent discount rates decline over time when the expected net present value

(ENPV) criterion is employed, but appear to increase with time when the logically

equivalent expected net future value (ENFV) criterion is used. The puzzle is not a

mere academic curiosum — given that at least one national government has already

adopted declining discount rates based upon the uncertainty rationale in Weitzman

[10, 11], resolving the puzzle is crucial. Gollier [4] lays down the gauntlet with his

conclusion that ‘we cannot both be right. In fact, to tell the truth, I believe that

we are both wrong’.

Gollier’s solution to the puzzle centers upon the idea that the ENPV criterion im-

poses the investment risk on the present, while the ENFV criterion imposes the risk

on the future. However, this paper shows that the allocation of risk has nothing

to do with the appraisal criterion. In fact, the choice of ENPV or ENFV simply

represents the choice of a specific evaluation date. Thus Gollier’s explanation of the

puzzle is not completely satisfactory.

Our conclusion, perhaps surprisingly, is that Weitzman and Gollier are both right.

We show that the schedule of certainty-equivalent discount rates declines with the

passage of time, but increases with the evaluation date. It is in this sense that
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Gollier [4] is correct to say that the discount rate increases with time. Proponents

of declining discount rates and institutions employing them — such as the UK

Government — can take solace from this paper that their approach has not been

invalidated.

Our resolution of the puzzle exposes the problem that investment choice is awkward

in the Weitzman [10, 11] setting because the optimal investment depends upon the

evaluation date. Indeed, the main thrust of Gollier [4] — that ‘our criteria are

arbitrary’ — is correct. A fuller analysis is required. One such line of investigation

by Gollier [2, 3, 5] assumes a constant utility discount rate and considers the effect

of different risk preferences on the yield curve. An alternative approach, discussed

in this paper, is to accept the presence of intergenerational conflict and to attempt

to formulate a set of rules providing guidance. Both approaches have some merit.

Indeed, in the murky waters of intergenerational policy, any theoretical advance

providing a ray or two of light is to be welcomed.
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Appendix

This appendix shows that proposition 1 holds irrespective of the time at which the

discount function is normalised to unity, s. To see this, suppose we modify equation

(8) to read:

ENV(τ) = kE

∫ T

0

B(t)e−r̃(t−τ)dt (19)

where k is a normalisation constant employed to ensure the discount function at a

particular time t = s is unity. In other words, we require

k =
1

Ee−r̃(s−τ)
(20)

The normalised certainty-equivalent discount function is given by:

e−rcan(t−s) =
Ee−r̃(t−τ)

Ee−r̃(s−τ)
(21)

As such, the normalised certainty-equivalent average discount rate is:

rcan(t, s, τ) = − 1

t− s
ln

[
Ee−r̃(t−τ)

Ee−r̃(s−τ)

]
(22)

Note that the certainty-equivalent marginal discount rate does not depend upon the

normalisation:

rcm(t, τ) =
Er̃e−r̃(t−τ)

Ee−r̃(t−τ)
(23)

In order to establish that the certainty equivalent average discount rate is declining

with t and increasing with τ , we employ the following two lemmas.

Lemma 4. The certainty-equivalent marginal discount rate, rcm(t, τ), is weakly

montonically declining with time t and weakly monotonically increasing with evalu-

ation date τ .
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Proof. Differentiating equation 23 shows that:

∂rcm

∂t
=

(
Er̃e−r̃(t−τ)

Ee−r̃(t−τ)

)2

− Er̃2e−r̃(t−τ)

Ee−r̃(t−τ)
(24)

By Jensen’s inequality, the right hand side is non-positive for all t, proving that

rcm is weakly declining with t. It follows that rcm is weakly increasing with τ by

observing that ∂rcm/∂t = −∂rcm/∂τ .

Lemma 5. Limt→s rcan(t, s, τ) = rcm(s, τ).

Proof. Taking the limit of equation (22) using L’Hôpital’s rule gives:

lim
t→s

rcan(t, s, τ) =
Er̃e−r̃(s−τ)

Ee−r̃(s−τ)
= rcm(s, τ) (25)

by equation (23).

We can now prove that the certainty-equivalent average discount rate declines with

the passage of time, t, irrespective of the normalisation date, s.

Proposition 6. The normalised certainty-equivalent average discount rate,

rcan(t, τ), is weakly monotonically declining with the passage of time, t.

Proof. Differentiating equation (22) with respect to t shows that:

∂rcan

∂t
=

(
1

t− s

)
(rcm − rcan) (26)

We proceed by contradiction. Suppose that for t > s, rcan < rcm. Then ∂rcan/∂t > 0

by equation (26). But as rcm = rcan at t = s (Lemma 5), and ∂rcm/∂t ≤ 0 (Lemma

4), it follows that rcan > rcm for t > s, establishing a contradiction. Hence for t > s,

rcan > rcm and ∂rcan/∂t ≤ 0 by equation (26). An analogous argument holds for

t < s.

It simply remains to establish that the certainty-equivalent average discount rate is

increasing with the evaluation time, τ , irrespective of the normalisation date, s.
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Proposition 7. The normalised certainty-equivalent average discount rate,

rcan(t, τ), is weakly monotonically increasing with the evaluation date τ .

Proof. Differentiating equation (22) with respect to τ shows that:

∂rcan

∂t
=

(
1

t− s

)
(rcm(s, τ)− rcm(t, τ)) (27)

For t > s, rcm(s, τ) ≥ rcm(t, τ) because ∂rcm/∂t ≤ 0 (Lemma 4). Thus ∂rcan/∂τ ≥ 0

by equation (27). An analogous argument holds for t < s.

24



References

[1] P. S. Dasgupta, K.-G. M aler, S. Barrett, Intergenerational equity, social dis-

count rates and global warming, in: Discounting and Intergenerational Equity,

Washington, DC: Resources for the Future (1999), 51–78.

[2] C. Gollier, Discounting an uncertain future, Journal of Public Economics 85

(2002) 149–166.

[3] C. Gollier, Time horizon and the discount rate, Journal of Economic Theory

107 (2002) 463–473.

[4] C. Gollier, Maximising the expected net future value as an alternative strategy

to gamma discounting, Finance Research Letters 1 (2004) 85–89.

[5] C. Gollier, The consumption-based determinants of the term structure of inter-

est rates, CESInfo Working Paper 1375 .

[6] B. Groom, P. Koundouri, E. Panopoulou, T. Pantelidis, Model selection for es-

timating certainty equivalent discount rates, UCL Economics Discussion Paper

04- 02 .

[7] HM Treasury, The Green Book: Appraisal and Evaluation in Central Govern-

ment, London: HM Treasury (2003).

[8] R. Newell, W. A. Pizer, Discounting the distant future: How much do uncertain

rates increase valuations?, Journal of Environmental Economics and Manage-

ment 56 (2003) 52–71.

[9] R. H. Strotz, Myopia and inconsistency in dynamic utility maximisation, Re-

view of Economic Studies 23 (1956) 165–180.

25



[10] M. L. Weitzman, Why the far-distant future should be discounted at its lowest

possible rate, Journal of Environmental Economics and Management 36 (1998)

201– 208.

[11] M. L. Weitzman, Gamma discounting, American Economic Review 91 (2001)

261– 271.

26



Table I: Two thought experiments on decision criteria and risk allocation.

Criterion Future bears risk Present bears risk

ENPV Safe deposit Safe deposit

ENFV Market Market
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