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Be warned: increases in renewables have surprised S@
forecasters, such as the IEA, in the past '

Global share of renewables in electricity generation
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Source: IEA reference scenarios of WEO 2004, 2007, and 2008, and New Policies Scenarios in WEO 2013 3



Cost of renewables (especially solar) have been falling g
faster than fossil fuels
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Now LCOE for renewables is getting close to fossil in
some cases, ignoring integration costs
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Levelized Cost of Electricity at 10% Weighted Average Cost of Capital (WACC) [USD,,,./MWh]
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In the enormous IPCC (201 |) report on renewable FTT
energy, integration took only 2| of over 1000 pages g

OXFORD
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And now renewables are being written off because of
integration issues, e.g. Brookings and The Economist 2014
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Net cost and benefits per MW and year compared to coal baseload

generation, United States
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* Conclusion: coal to gas switching is the only answer...?

= Well,it is if you ignore all key integration possibilities,
such as storage, interconnection, DSR and cheap peakers

I Avoided capacity costs

1,000

KCombined cycle

* The paper calculated that
solar and wind deliver very little
reduction in the need to build
new coal capacity

= But a search for the phrases
“interconnection” and “DSR”
and “response” yield nothing

1,250

* The paper does briefly
consider storage, merely noting
that:“In theory... Practically,
however, the technology for
electricity storage is not yet
developed enough to make it
economical without
government subsidies.”

Significant “avoided

capex” on new coal
from gas and nuclear

Source:The Economist; Frank (2014, Brookings) “The net benefits of low and no-carbon electricity technologies” 7
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There are four major categories for managing the
integration of renewables at scale

d
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Energy storage

* Temporal supply smoothing
" Pumped hydro

= Battery storage

= Compressed air (CAES)

\_
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DSR
* Demand Side Response including
= Time of use pricing

= Smart meters

» |ndustrial consumers

\_
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Interconnection

= Spatial supply smoothing
* Norwegian hydro

= Continental hydro

" |celandic geothermal...?

\_

\
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°Peakersl Flex Generation \

= Largely thermal
= Reciprocating engines
= OCGT

\_
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There are different energy storage options for S@
different purposes, as we have already seen -

UPS T & D grid support Bulk power
Power quality Load shifting
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Compressed air
Energy storage
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e Energy storage: capex = PCS and storage unit; s@&
opex = input energy and losses S

Charging losses ﬁ
From generator or - Energy sftcrage
grid input energy unit
Power conversion system
(PCS) (mechanical,
R /I electro-chemical,
E  (kWh JL Discharging losses

Overall efficiency = %

(AC-1-AC) " Storage losses

Fig. 1. Main sections of EES systems and energy losses.

Source: Zakeri and Syri (2015, Renewable and Sustainable Energy Reviews) Il
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G Total capex ranges from €200-4,000/kWV once
storage unit costs are converted
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Interconnection with the EU’s “projects of TR s
common interest” would help renewables *

the Environment [N
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Projects of common interest — Electricity and Smart Grids
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Q Interconnectors have low start up and variable S@ 7
costs, but not insubstantial fixed costs i
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— The value of an interconnector rests on two key elements:
— Average price differential between the two markets being

— Size of (negative) correlation in prices across the two markets (Chinese — EU sunshine!)
— Capital costs depend upon capacity and distance; roughly £Im / MW of capacity
— Losses can be 1.5% for conversion and 0.75% per 100km for transmission

— Interconnection between a high-price market and a low-price market almost always
causes the following political economic structure:

Higher-price market Lower-price market
Producer Blocks Supports
Consumer Supports Blocks

— If the producer in the higher-price market is powerful enough to be able to block
the interconnection, then it will not occur

— Note that regulated TSOs are often in favour if this increases the pool of regulated
assets




‘Demand-side response’ at the industrial level is

already working in the UK

Use of back-up or embedded
generators in response to an incentive
payments or price changes

Majority of current DSR contracted
PJM: majority from back-up generation
which are 81% powered by diesel

Slower response: ramping time up to
30mins

More reliable than demand-led DSR
Deliver an average 95kWV of
generation for each 100kw in service
level agreement

Changes in electricity usage by end-use
customers in response to incentive
payments

Normally adopted by domestic users

Fast response; no ramping
Limited quantities of DSR delivered: 20-
800kW

Less reliable as difficult to reduce
demand without disrupting daily
operations

Only deliver an average 68kW for each
| O0kWV of the service level agreement
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Other than interconnectors, flexible generation is S@* d
likely to offer lowest variable costs of integration

5 _ OCGTs have moderate capex but low
| variable costs

— Response times up to 30 mins

— Average price differential between the two
markets being

— Size of (negative) correlation in prices across the
two markets (Chinese — EU sunshine!)

very rapid response, can ramp up and
down economically in an hour

"

Also have moderate capex, but
moderate variable costs

Hence more short duration peaking
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Putting it together does not yet reveal an obvious S@WW
winner on every dimension o

ILLUSTRATIVE

Capex and
fixed costs,
£/kWlyear

Peakers Storage

Variable
costs,
£/MWh

Peakers Storage

Start costs,
£/MW/Start

Peakers

Source:Aurora Energy Research |7
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What evidence do we have so far on costs of S@* =
integrating large-scale renewables?
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Some countries have long had very high renewable penetration rates, mainly because
of dispatchability (2008 figures on an energy basis, from IEA, 2010):

— lceland 100% (hydro and geothermal)
— Norway 99% (hydro)

— Austria 69%

— New Zealand 64%

— Canada 60%

But ultimately not abundant evidence on costs of integrating intermittent renewables

Balancing costs (differences between bid wind generation and actual production)
have been US $1.4 = 3.0 / MWh for Danish wind in Nordic market (IPCC, 201 1)

Costs of US $9.2 /| MWh ($5.6 for network upgrades, $3.6 for additional reserves)
to integrate 185GW of wind in Europe by 2015 (EWIS, 2010)

Various studies have concluded in various places that even at penetration levels
above 50%, the market incentive to add storage capacity is low at current costs




The economics of integration are ‘pleasingly non-
trivial’ — systems economics is required
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underlying growth rate of the economy does not change. However, this assumption may be inappropriate in
some important circumstances, including in dimate-change and energy policy. One example is global targets
for carbon emissions, while another is alarge renewable energy project in asmall economy, such as a hydropower
dam. This paper develops some theory on the evaluation of non-marginal projects, with empirical applications to
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1. Introduction

Benefit-cost analysis (BCA) of major policies, programmes and pro-
jects is becoming more widely used to inform and improve decisions
(Hahn and Tetlock, 2008). In the United States and the United Kingdom,
for instance, there is now a legislative requirement to conduct BCA of
significant new policies and policy reforms, while other countries and
regional organisations such as the European Commission have made
steps in the same direction (Pearce et al., 2006). In addition, there is a
long tradition of BCA of major projects by the World Bank and other
multilateral financial institutions.

# We thank David Anthoff, Partha Dasgupta, Francis Dennig, Christian Gollier, Chris
Hope, John Quah, Robert Ritz, Sjak Smulders, Nick Stern, seminar participants at EAERE
2009 and at the Toulouse School of Economics, 2nd the editor. Special thanks for de-
tailed comments g0 to two anonymous referees as well s Antony Millner. We would
also like to acknowledge the financial support of the Grantham Foundation for the Pro-
tection of the Environment, as well as the Centre for Climate Change Economics and
Policy, which is funded by the UK's Economic and Social Research Council and by Mu-
nich Re. The usual disclaimer applies.

* Corresponding author at: Grantham Research Institute on Climate Change and
the Environment, London School of Economics and Political Science, United Kingdom
Tel: +44 207 955 7589; fax: +44 207 107 5441

E-mail address: s dietz@lse.ac.uk (S. Dietz).

0140-8883/5 - see front matter © 2013 Published by Elsevier BV.
http://dx.doi.org/10.1 016/j.eneco.2013.05.023

Conventional BCA, which extends the basic practice of discounted
cash flow (DCF) analysis to the net social benefits of projects,’ incorpo-
rates the normally reasonable assumption that the project under
examination is marginal. A marginal project does not significantly
change relative prices, and it is on relative prices that most of the liter-
ature has focussed. However, a marginal project must also be small
enough that the underlying growth rate of the economy is not signifi-
cantly changed. This class of project has received much less attention,
even though a number of candidates can be identified, including in
the realm of climate-change and energy policy.

Most notably, proposals to spend several per cent of global GDP on
the deployment of ‘low-carbon’ technologies, such as renewable en-
ergy, smart electricity grids and transport infrastructure, are explicitly
intended to shift the global growth path by avoiding climate change
(e.g. Stern, 2007). As part of this global infrastructure investment
programme, there is likely to be a renewed impetus for large develop-
ment projects in small economies, for example to generate renewable

* Henceforth we will use the word ‘project’ to denote any change in ‘business as usu-
al’, whether arising from a private-sector or government policy, programme or project.

Source: Dietz and Hepburn (201 3); http://www.geni.org/globalenergy/library/national_energy_grid/europe/europeannationalelectricitygrid.shtml
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The economic costs of integration depends upon how
much of each type of renewable is already present

)

Smith School =g
s - of Enterprise and T
the Environment UMIGEEIEE

» OXFORD

Different types of renewables differ in relation to their:

2
3
4.
5.
6
7/

Dispatchability

Predictability

Geographical diversity

Capacity factor (average hours / total possible hours)
Capacity credit (reduction in residual peak demand / capacity)
Active power frequency control

Voltage and reactive power control

21



Scale integration of renewables (SIR) will have major s%& @
implications for the structure of power markets o e

Consider a world with close to 100% renewables...

The system marginal cost could be zero not infrequently, notwithstanding
storage technologies soaking up low cost supply

Real-time power pricing would assist in DSR, matching supply and demand
and providing security of supply, but would not be enough

Underlying price variability increases, the missing money problem gets
worse, and energy-only markets may not deliver

Mechanisms (of one kind or another) will be required to cover fixed costs
of all generation, including storage and interconnection

22
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Part of the INTEGRATE programme will plug gaps in S@* =
our economic and market knowledge
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— |PCC (201 1) noted several “gaps in our knowledge relating to integration
options” that “may become important in the future”, which are still open
including...

Changes in the non-renewable generating portfolio (e.g. impact on retirements (“stranded
assets”), flexibility characteristics and the value of possible fleet additions)

Quantification of the potential for load participation or demand response to provide grid
services needed to integrate RE

Impacts of the integration of the electricity sector with other energy sectors
Benefits and costs of combining multiple RE resources in a complementary fashion

Better market arrangements for variable renewable and flexible sources”

— INET and SSEE research capability on specific economic questions —
complementarities, network and spatial structures, market design

24
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|. Optimal integration strategy will be specific to the geography and
system at hand, and will show strong path dependence

2. The economics of large-scale renewable integration are extremely
interesting

3. The new INTEGRATE research programme will attempt to answer
the key questions

4. Any comments, thoughts, corrections, please get in touch

25
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Thank you
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